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Abstract 

Reducible space groups are introduced as those for 
which the point groups G are Q-reducible. The split- 
ting of the rational space V(T, Q), spanned by the 
translation subgroup T of the reducible space group, 
into two G-invariant components is considered. First, 
it is shown that cases of orthogonal and inclined 
reductions have to be distinguished. Further, reduc- 
tions which lead to Z decomposition are distin- 
guished from those which lead to Z reduction. The 
central point of the paper is the 'factorization 
theorem' which asserts that factor groups of reducible 
space groups by their partial G-invariant translation 
subgroups have the structure of subperiodic groups. 
The homomorphisms which map the space group 
onto respective subperiodic groups are analogous to 
homomorphisms, which map space groups onto 
respective site-point groups. In analogy with point 
groups, subperiodic groups are introduced which do 
not act on the Euclidean space but on a Cartesian 
product of Euclidean space spanned by their transla- 
tion subgroup with the vector space spanned by miss- 
ing translations; it is suggested that these groups are 
called the contracted subperiodic groups and a for- 
malism is developed in which these groups are 
geometrically natural representatives of factor groups 
of reducible space groups. 

I. Introduction 

Space groups with Q-reducible point groups have 
several interesting properties, which have been 
described by a 'separation diagram' and connected 
with a 'separation theorem' (Kopsk2~, 1986, 1988a). 
We shall define here reducible~irreducible space 
groups as those for which the point groups are Q- 
reducible~Q-irreducible. The term reducible space 
group is justified by the fact that such groups can be 
expressed as subdirect or multiple subdirect products 
of space groups in lower dimensions. 

The construction, known as subdirect product 
(sum), was used for the first time by Goursat (1889) 
in the derivation of four-dimensional point groups 
and later on numerous occasions in connection with 
the derivation of various kinds of generalized groups. 
Its nature has been recognized in the work by Litvin 
& Opechowski (1974) on spin groups. The subdirect 
product is well described in the recent book by 
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Opechowski (1986), the multiple subdirect products 
(and sums) are described by Kopsk2~ (1988b), where 
we also prove that reducible space groups are expres- 
sible as multiple subdirect products of lower- 
dimensional space groups. Since this reduction can 
be extended to irreducible space groups, it is possible 
to develop crystallography in arbitrary dimensions 
analogously to the theory of finite groups; namely, 
to consider the irreducible space groups as basic ones 
and to set up the rules by which the reducible space 
groups can be constructed. 

In the present paper we shall investigate another 
interesting property of reducible space groups. If the 
space group ~ with a point group G and a translation 
subgroup TG is reducible, then there exist G-invariant 
subgroups TGi of TG which are of lower dimensions 
than To. If such a group also satisfies the condition 
TGj = TG n V(TGi, R), so that it is the group of all 
translations of TG in the space it itself spans, we call 
it the partial translation subgroup of cg. As a G- 
invariant subgroup of TG it is a normal subgroup 
of q3. 

The main result of the present paper is the 'factoriz- 
ation theorem' which claims that factor groups ~/TGi 
of reducible space groups over their partial-transla- 
tion subgroups are isomorphic to subperiodic groups, 
the translation subgroups of which lie in a com- 
plementary space to V(TG~, R). We will prove the 
theorem with the use of homomorphisms which map 
the space group in question onto certain subperiodic 
groups acting on the same Euclidean space as the 
original space group itself. Then we will show that 
this is not the best way to interpret these factor groups. 
There is an analogy with the case of point groups 
which, in their r61e as factor groups of space groups 
by the complete translation subgroup, are interpreted 
as operator groups on the space V(n), associated with 
the Euclidean space E(n),  on which the original space 
group is acting. We show that subperiodic groups as 
factor groups of space groups by partial translation 
subgroups should analogously be interpreted as 
groups which act on Cartesian products of the 
Euclidean and vector spaces of lower dimensions, 
which are, in a certain sense, complementary. These 
groups, called here contracted subperiodic groups 
also appear in complementary pairs, associated with 
reductions of vector space under the action of the 
point group of the reducible space group. 

© 1989 International Union of Crystallography 
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We start our investigation with consideration of 
possible reductions of vector spaces over various 
fields under the action of the point groups and their 
consequences for the reduction of translation sub- 
groups of space groups. First we distinguish between 
orthogonal and inclined reductions and between 
orthogonal- and inclined-reduction classes. Then we 
show that we have to distinguish cases when reduc- 
tions of real or rational space spanned over the trans- 
lation group Tc leads either to Z decomposition into 
the form of direct sum of partial translation subgroups 
or to Z reduction into the form of a subdirect sum 
of these subgroups. 

The investigation in the present and subsequent 
papers, which is in a certain sense inverse to the 
present one, is performed in a dimension-indepen- 
dent manner and the main results are presented in a 
compact form which, unfortunately, does not cover 
all possibilities which occur in cases o f  inclined- 
reduction classes. The latter present some problems 
which require separate investigation. 

2. Decomposition pattern of crystallographic 
point groups 

A group G of real orthogonal operators on a real 
linear orthogonal space V(n, R) of dimension n is 
said to be an n-dimensional crystallographic point 
group if it leaves invariant some translation group To, 
of rank n which spans the whole V(n, R) over the 
field of real numbers R. We span also the rational 
space V(n, Q)= V(Tc, Q) by Tc over the rational 
field Q and, to get a complete picture, we imbed 
V(n, R) in a natural way into the complex space 
V(n, C). The group G is then a group of operators 
on each of spaces V(n, K), K = C, R, Q, as well as 
on the translation group To, which can be considered 
either as a free Abelian group or as a Z module of 
rank n. In a unified language (Curtis & Reiner, 1966; 
Ascher & Janner, 1965, 1968/69; Jarratt, 1980), the 
spaces V(n, K) and the group Tc are considered as 
KG modules, where K stands for the fields C, R, Q 
in V(n, K ) and for the ring of integers Z in case of To. 

The main result concerning reducibility of KG 
modules for cases when K is a field then reads: 

The KG module V(n, K) is either irreducible or 
completely reducible to the form: 

V(n, K)=(~ Vc,(n~,d~,, K) 
o :  

=Q 0 V.,~(d., K), (1) 
a a = l  

where V,,,,(d~, K) are irreducible KG modules which 
realize K-irreducible representations of G of the class 
a (K), V~ (n~d~, K) is the linear envelope of spaces 
V,~a(d~, K) with the same label a(K) over K, do is 
the dimension of representation a (K) ,  irreducible 

over K, n~ (K) its multiplicity in G, considered as its 
own faithful representation. 

The first part of this decomposition is unique and 
the spaces V,(n,~d~,, K) are mutually orthogonal. It 
is called the canonical decomposition (see e.g. Jarratt, 
1980). The second part is the complete decomposi- 
tion, in which KG submodules V,~a(d,~, K) are K- 
irreducible. The canonical decomposition is complete 
only if all numbers n,,(K)= 0 or 1 for a given field 
K. Actually, the canonical decomposition is complete 
for all three fields if it is complete for one of them. 

The numbers n~(K) are uniquely determined by 
the group G and they depend on the field K, which 
also defines the labels a (K) .  As we extend the field 
from Q to R and further to C, the labels may split 
according to splitting of representations. The sets 
n,,(K) will be called here the decomposition pattern 
of the group G. Up to three dimensions we have 
simple situations, because the decomposition patterns 
coincide for the fields Q and R, although for cyclic 
groups of order higher than two the R-irreducible 
representations split in C. The first cases when 
decomposition pattern is different in Q and R occur 
in four dimensions for groups of octagonal, 
decagonal, and dodecagonal families. A simplified 
characteristic of decomposition pattern up to four 
dimensions is given in the book by Brown, Billow, 
Neubfiser, Wondratschek & Zassenhaus (1978) where 
only dimensions without labels a ( K )  are listed. 

Our investigation applies to cases when the group 
G is Q-reducible. As we can again see in the Brown 
et al. (1978) book, this excludes only the groups: (i) 
# 1 and ¢~T which are all group types in one dimension; 
(ii) groups of square and hexagonal systems in two 
dimensions, (iii) cubic groups in three dimensions, 
and (iv) groups of octagonal, decagonal, dodec- 
agonal, di-isohexagonal orthogonal, icosahedral and 
hypercubic families in four dimensions, which are 
irreducible. 

3. Orthogonal and inclined reductions 

According to decomposition (1), the spaces V(n, K) 
split generally into many G-invariant K-irreducible 
subspaces. Here we shall be concerned with cases 
when the space V(n, Q) splits into a direct sum 
VI(k, Q)~ V2(h, Q), k+h=n,  of two G-invariant 
subspaces, which can be further reducible. The 
decomposition pattern determines possible cases of 
such splitting, which will be called briefly Q reduc- 
tion. Since the crystallographic point groups are 
defined in the real space V(n, R) and in practice we 
shall refer to reduction of this space - the R reduction, 
it is desirable to see the relationship between R and 
Q reductions. It is clear that every Q reduction implies 
R reduction V(n, R)= V~(k, R)~  ~(h, R), where 
spaces V~(k, R), V2(h, R) are spanned by bases of 
V~(k, Q), V2(h, Q) over the extended field R. The 
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inverse is not always true. To distinguish possible 
cases, it is suitable to introduce reduction classes: 

Definition 1: We say that the K reduction 

V(n, g ) =  V,(k, K)(~ V2(h, K) (2) 

belongs to the K-reduction class [ n~ (K) ,  n,~2(K)], 
where n~l(K), n~2(K) are multiplicities with which 
G-invariant K-reducible subspaces V,,a(d~, K) 
appear in complete decomposition of subspaces 
V,(k, K), V2(h, K). 

The K-reduction class is called orthogonal if only 
one of the multiplicities n,~(K), n~2(K) does not 
vanish for every a (K). Otherwise, the K-reduction 
class is called inclined. 

The K reduction (2) itself is orthogonal, if the two 
subspaces are orthogonal, otherwise it is inclined. 

We can see that the following holds for both fields 
Q and R: (i) The number of K-reduction classes is 
finite. (ii) Each orthogonal K-reduction class con- 
tains exactly one K reduction which is or thogonal-  
the class determines the reduction uniquely. (iii) If 
the canonical decomposition is complete, then all K 
reductions are orthogonal and uniquely defined by 
orthogonal K-reduction classes. (iv) The total num- 
ber of orthogonal K reductions which belong to 
orthogonal classes is finite. 

Inclined reductions present some more problems 
because: (i) An inclined K-reduction class defines 
infinitely many K reductions. (ii) An inclined R- 
reduction class always contains orthogonal reduc- 
tions, because the subspaces V~a(d~, R) can always 
be chosen as orthogonal. (iii) For an inclined Q- 
reduction class a weaker statement holds: There exist 
spaces V(n, Q) for which some of the Q reductions 
of a given inclined Q-reduction class are orthogonal. 

The relationship between R- and Q-reduction 
classes and between the reductions is different for the 
two situations: 

A: None of the classes a(Q) of Q-irreducible rep- 
resentations of G splits in R. Then every orthogonal 
R-reduction class defines uniquely an orthogonal Q- 
reduction class and the unique R reduction of this 
class implies unique Q reduction for any space 
V(n, Q). Each inclined R-reduction class also defines 
uniquely a Q-reduction class but a certain R reduc- 
tion implies Q reduction only for certain spaces 
V(n, Q). On the other hand, a certain R reduction, 
which implies Q reduction of a given V(n, Q), always 
exists. 

This is exactly the situation in three dimensions, 
where inclined reductions appear only in triclinic and 
monoclinic systems. In higher dimensions the follow- 
ing situations may also appear: 

B: Some of the classes a(Q) of Q-irreducible rep- 
resentations of G split in R. Then the class a (Q) splits 
into a set of clasees ai(R),  i=  1 , 2 , . . . , p ~ ,  of the 
same dimension de, = d~/p~ [see theorem (70.15) in 

Curtis & Reiner (1966)]. Accordingly, each space 
V,,,,(d~, Q) spans a real space V~,(d~, R) which 
reduces into a direct sum of R-irreducible subspaces 
V~,a(d~,, R). An R-reduction class then defines a Q- 
reduction class if and only if the multiplicities 
n~,(R)l(R) and hence also the nm(R)2(R ) a r e  the same 
for all indices i belonging to any of a(Q). [The 
multiplicities n,~,(g)(R) = nc,,(R)l(R)+ nm(g)2(R ) are 
the same for all i, because G is assumed to be crys- 
tallographic.] If the R-reduction class satisfies this 
condition, it defines the Q-reduction class again 
uniquely and two situations may appear: (i) The 
R-reduction class is orthogonal. Then it defines 
uniquely the R reduction which implies a unique Q 
reduction for every space V(n, Q). (ii) The R-reduc- 
tion class is inclined. Then so is the corresponding 
Q-reduction class, there exist infinitely many R 
reductions among which are also orthogonal ones 
and R reductions imply Q reduction only for certain 
spaces V(n, Q). 

4. Z decomposition and Z reduction 

A translation group Tc of rank and dimension n in 
the space V(n, R) spans a rational space V(n, Q ) =  
V(Tc, Q). If T~ is G invariant, then V(n, Q) is G 
invariant and if G is Q-reducible, then each Q reduc- 
tion of V(n, Q) implies a certain reduction of To. To 
find the form of this reduction, we introduce projec- 
tions o.l: V(n,R)~ VI(k,R), 0"2: V(n,R)~ V2(h,R ) 
of the space V(n, R) onto its G-invariant complemen- 
tary subspaces V~(k, R), V2(h, R), spanned by the 
same bases as Vl(k, Q), V2(h, Q). These projections 
are uniquely defined by Q reduction and they are 
either orthogonal or skew projections according to 
whether the Q reduction is orthogonal or inclined. 
The spaces and the group Tc may also be considered 
as Abelian groups and the projections as 
homomorphisms with kernels keroh=V2(h,R), 
ker o.2 = V~(k, R) when applied to V(n, R). 

Theorem 1: Let T~ be a G-invariant subgroup of 
V(n, R) of rank and dimension n and G a Q-reduc- 
ible group on V(n, R). Then with each Q reduction 
V(T~, Q ) =  V(n, Q ) =  V~(k, Q)O V2(h, Q) there is 
associated a reduction of Tc of the general form: 

where 

T~ = To,O Tc2[0-i-d2-i-...-[- dp], (3a) 

Tel = ker o.2(Tc) = Ten V~(k,R) 

= TGn Vl(k, Q), 

To2 = ker O.,(TG) = TGn V2(h,R) 

= Ten V2(h, Q) 

and p is finite. The projections of TG are then 
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expressed as 

oh(TG) = T°~ = TG~[O-i-d2~-i-...-i-dp,], 
(3b) 

o-2(Ta) = T°2 = Ta2[O4-d22 q-. . . ~- dp2], 

where d 0 = o)(d,), i =  1 , 2 , . . . , p ;  j =  1,2. 
Groups TG~, T0~, TG2, T°2 are G invariant with 

ranks and dimensions k and h for the first and the 
following pair, respectively. 

Proof: Groups T°~, T°2 are G invariant because 
for every ti ~ TG, c TG, the vectors gt, must lie simul- 
taneously in V, and in Ta for every g~ G. Since 
gob(t) = o.~(gt), go'2(t) = o'2(gt) holds for every g ~ G, 
t E V(n, R), we have GT °, = Go',(TG) = tr,(GTG) = 
tr,(TG)= T°, ,  so that the groups T°~, T°2 are also 
G invariant. 

The assertion about ranks and dimensions of 
Ta~, TG2 follows from the fact that for any vector of 
V(n, Q) there exists an integer factor which sends 
this vector to TG. The rank of the direct sum TG~O) TG2 
is then h + k = n, so that this direct sum is a subgroup 
of finite index p in TG and TG is expressed by coset 
resolution (3a). Formulae (3b) then follow by projec- 
tions and the groups Tel ,  TG2 are subgroups of 
T°~, T°2 of the same finite index p. The assertion 
about ranks and dimensions of T°~, T°2 follows 
immediately. 

Definition 2: We shall refer to (3a) as the Z reduc- 
tion of the group Ta. In the particular case when 
p = 1, which corresponds to the case when intersec- 
tions and projections of TG coincide, so that TG~ = 
T°~, TG2 = T°2, (3a) turns into a direct sum 

Ta : TG,O TG2 = T ° , O  T°2 (3c) 

and we shall refer to it as to Z decomposition of the 
group TG. 

We observe that (3a) is a subdirect sum of groups 
T ° l ,  TOE and the factor groups TG/(TGIO)Ta2), 
TO1~ Tal, TO2/Ta~ are isomorphic groups of order p. 

Our R and Q reductions are actually also decompo- 
sitions, because they are expressed by direct sums 
(equivalence of reducibility and decomposability of 
finite groups in fields C, R, Q follows from the 
theorem of Maschke). Theorem 1 shows that a certain 
Q reduction (= Q decomposition) may imply either 
Z reduction or stronger Z decomposition. Notice 
that, while R or Q reducibility (--decomposabili ty),  
decomposition pattern and classes of R and Q reduc- 
tions may be regarded as properties of the group G, 
the Z reducibility or Z decomposability of the group 
TG with respect to a certain Q reduction must be 
regarded as a property of Ta as ZG module or as a 
property of the pair (G, Ta). Accordingly, the group 
G defines a geometric class (Q class), while pairs 
(G, TG) define arithmetic classes (Z classes) of space 
groups. We can see easily that for each Q reduction 
of V( TG, Q) there exists a translation group for which 

Q reduction implies Z decomposition. Indeed, this 
is the group Ta~O TG2 itself in (3a). 

Orthogonal reduction classes 
Since a Q reduction of a given orthogonal Q reduc- 

tion class is unique and orthogonal, the spaces 
V~(k, Q), V2(h, Q) and hence also the projections 
(homomorphisms) oh, o2 are uniquely defined by the 
class and are orthogonal. Also, either of the subspaces 
already defines uniquely the other one as well as the 
reduction class and both the homomorphisms o5, o2. 
The Z reduction or Z decomposition of TG still 
depends on the arithmetic class and generally also 
on its orientation with respect to the reduction. Com- 
parison with classical crystallographic concepts 
shows that vectors d, in (3a) have the meaning of 
centring vectors or of additional centring vectors, if 
TG~ or Ta2 or both are already centred. [See the 
relationship between subdirect sums and centring 
vectors (Kopsk~, 1988b).] 

Inclined reduction classes 
As stated in the previous section, the number of Q 

reductions in a given inclined Q-reduction class is 
infinite. We also need to realize that the choice of 
one component in an inclined Q reduction, say the 
V~(k, Q), does not determine the second one - the 
VE(h, Q). Neither of the homomorphisms oh, o'2 is 
determined only by one of the G-invariant subspaces. 
Depending on the choice of these subspaces, theorem 
1 may lead to various Z reductions or Z decomposi- 
tions of Ta within one Q-reduction class. It may also 
happen that a certain Q reduction of a given class 
leads to Z decomposition, while another leads only 
to Z reduction. 

A remark 
Theorem 1 can be extended to arbitrary R reduc- 

tions with a slight amendment;  if the R reduction 
does not imply corresponding Q reduction, then p is 
not finite and the groups appearing in the decomposi- 
tion are not necessarily discrete groups. 

5. Reducible space groups and 
the factorization theorem 

The space V(n, R) considered as an Abelian group 
is a normal subgroup of the full n-dimensional 
Euclidean motion group ~(n)  and the n-dimensional 
orthogonal group ~(n)  is the corresponding factor 
group. We introduce a homomorphism or :~(n)->  
~'(n) with ker or = V(n, R), Im or- -~(n) .  Then each 
group of isometries (Euclidean motions) of the n- 
dimensional Euclidean space E (n) can be expressed 
by a symbol ~J={G, TG, P, uG(g)}, where TG = 
ker o r (~ )=  ~d~ V(n, R) is its G-invariant translation 
subgroup, G = o r ( ~ ) c  ~'(n) is its point group and 



VOJTI~CH KOPSKY 809 

ue:  G-~ V(n, R) is its system of nonprimitive transla- 
tions with respect to the origin P of E(n). In order 
that ~3 be a group, ue(g)  must satisfy Frobenius 
congruences: 

we(g, h) = u~(g) + gue(h)  - ue(gh) 

=0  (mod Te), (4) 

where we" G x G ~ Te is the so-called factor system. 
The elements of the group ~ are then expressed by 
Seitz symbols {g l t+ue(g)}e ,  where g runs through 
the group G, t through the group Te. As usual, we 
shall drop the index P for a while on the assumption 
that the origin P is fixed. The introduced notation is 
of general validity. The group ~ is a space group if 
the group Tc is of rank and dimension n [some 
authors use the description of Te as discrete transla- 
tion group large in V(n, R), e.g. Schwarzenberger, 
1980)]. 

Definition 3" The space group ~ = 
{(3, To, P, ue(g)} is said to be reducible/irreducible, 
if its point group G is Q-reducible~Q-irreducible. 

Corollary: It follows immediately that the reduci- 
bility or irreducibility of space groups is a property 
common to all space groups of a given geometric (Q) 
class. 

Actually, we can check up to four dimensions from 
decomposition patterns in the book by Brown, Billow, 
Neiibiiser, Wondratschek & Zassenhaus (1978) that 
reducibility/irreducibility is a common property of 
space groups of a crystallographic system or family 
and the general validity of this statement could also 
be proved. 

Theorem 2 ( Factorization theorem for reducible space 
groups): Let cg={G, Te, P, ue(g)} be a reducible 
space group, V(To, Q ) =  V(n, Q ) =  Vl(k, Q)O) 
V2(h, Q), one of the Q reductions of the G-invariant 
rational space (QG module) V(Te, Q) into the direct 
sum of lower-dimensional G-invariant spaces (QG 
modules) and (3a) associated with Z reduction or Z 
decomposition of Te. Then the groups Tel,  Te2 (par- 
tial translation subgroups of ~) are normal in ~ and 
the factor groups cg/Te2, ~/Te~ have the structure 
of subperiodic groups ~ = {G, T ° l ,  P, uel(g)} and 

= {G, T ° 2 ,  P, Ue2(g)} , respectively, where 
uei(g)=o'i(ue(g)), i= 1,2. 

Proof: The groups Te~, Te2 are G invariant and 
hence normal in ~ by theorem 1. Fu~her, we distin- 
guish components of vectors from V(n, R) in sub- 
spaces Vl(k,R)= V(Tel,R) and V2(h,R)= 
V(Te2, R) by indices 1 and 2, respectively. The com- 
ponents of vectors from Te lie in T°I, T°2. We fix 
the vectors {0, d 2 , . . . ,  dp}. Then every t e Te splits 

uniquely into t = t ° + t ° = t l + t 2 + d i  with tl e Tel,  t2e  
TeE; tOe T°a,  toe T°2 and t ° l= t l+d i l ,  t ° : t 2 + d i 2 .  
Notice that the components of a general vector t e Te 
are not entirely independent, unless Z reduction (3a) 
degenerates into Z decomposition (3c); they contain 
independent components t~, t2 but any one of the 
vectors di, dil, di2 determines the other two. In par- 
ticular, for the factor system 

we(g, h) : w°,  (g, h) + w°2(g, h) 

where 

while 

=wel(g,h)+we2(g,h)+d(g,h), (5) 

w°,(g,h)=wol(g,h)+d,(g,h)e T°l, 

w°2(g, h)=we2(g,  h)+d2(g, h)e T°c2, 
(6a) 

wcl(g, h) e Tel,  we2(g, h) e Te2. (6b) 

The system of nonprimitive translations u e : G ~  
V(n,R) also splits into its components u e ~ : G ~  
Vl(k, R), UG2: G-~ V2(h , R), so that ue(g)  = 
uel(g)+ue2(g). Since G acts separately on the com- 
ponents, it is: 

w~l (g, h) = uel (g) + guel(h ) - Uel(gh ), 
(7) 

w°2(g, h) = ue2(g) + gue2(h ) - ue2(gh ), 

and Frobenius congruences (4) split into two sets of 
congruences, which may be written either as 

(8a) 
w°,(g,  h )=d l (g ,  h) (mod Te,), 

w°2(g, h ) =  d2(g, h) (mod Te2), 

or as 

W°l(g ,  h ) = 0  (mod T~i), 
(8b) 

w°2(g, h)=0 (mod T°e2), 

with an additional condition that w°i(g, h) are, for 
the same pair (g, h), components of the same vector 
d(g, h). If the Z reduction (3a) turns out to be Z 
decomposition, then d ( g , h ) = 0  and congruences 
(8a), (8b) are simplified to 

wel(g, h) = 0  (mod Tel), 
(9) 

we2(g, h) --0 (mod Te2). 

Since the components uel(g),  ue2(g) satisfy 
Frobenius congruences (8b), it is already clear that 
they define the groups ~ and ~. To show that these 
are the desired factor groups, we introduce mappings: 

crl{g It} = {g I cr,(t)} = {g It,}, 
(10) 

0"2{g [ t} -- {g I cr2(t)} -- {g It2}. 

Applying them to elements {g It +ue(g)}  of cg, we get: 

cr,{g I t + ue (g ) }  = {g It ° + u e l ( g ) } ,  
(11) 

~r2{glt+ue(g)} = {glt°+ue2(g)}, 
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and, applying them to a product of two elements in 

o'~({g ] t + ua  (g)}{h ]t' +uo(h)})  

=o'i({gh ]t + gt' +uo(gh )+wa(g, h)}) 

{ = {gh lt°+ gt°' +ua,(gh ) +w°,(g, h ) }} 
{g [t o + Uoi(g)} { h I t°' + uo,(h)} 

=o'~({glt+uo(g)})o'~({hlt'+uo(h)}), (12) 

we see that the mappings are homomorphisms which 
map the group ~ onto the groups ~,  ~.  Indeed, as g 
runs through G, t through To, the elements on the 
right-hand sides of (11) run through the elements of 
~ ,  ~ ,  respectively. The part of (12) set in braces is 
the multiplication law on groups ~,  ~.  From (11) we 
also see that kernels of these homomorphisms, as 
applied to cg, are ke ro ' , (~ )  = Ta:,  ker o.2(cg) = To,. 
Existence of the homomorphisms with these kernels 
and with images o ' , ( cg )=~ ,  o '2(cg)=~ is exactly 
what we wanted to prove. 

Definition 4: We shall say that two subperiodic 
groups are complementary if they have the same point 
group G and if their translation subgroups T°, ,  T°~2 
span complementary subspaces of V(n, R). 

Thus the factorization theorem shows that factor 
groups of a reducible space group by partial transla- 
tion subgroups To,, To2, corresponding to a certain 
Q reduction, are isomorphic to a pair of complemen- 
tary subperiodic groups. We use the letters ~ and Y? 
for these groups to indicate an analogy and anticipate 
the use of factorization theorem in three dimensions 
where the complementary groups are the layer and 
rod groups. 

6. Origin dependence of homomorphisms o.t and o'2 

The homomorphisms o'1, o'2 and the groups ~,  ~ are 
related to the choice of origin as well as the Seitz 
symbols. This is innocuously hidden in (10), where 
Seitz symbols refer to a certain origin P. Let us see 
how the picture changes if we choose another origin 
S = P +-r. The Seitz symbols for the two origins are 
related by 

{g ]t}s = {glt +~(g ,  -r)}p, 

{g[t},, = {g t - ~ ( g ,  X)}s, 

where ¢(g, -r) = -r - g'r is the shift function. Hence the 
group ~d can be equivalently expressed with respect 
to two origins as 

~ =  { G, To, P, ua(g)} 

={G, Ta, S, uo(g)-~(g,'t)}, (13a) 

while 

~d('r) = {O, To, P, uo(g)  +~0(g, "r)} 

= {O, T, S, uo(g)} (13b) 

is a space group, obtained by a 'shift' of ~d on -r. 

The homomorphisms o.~, 0"2 are not influenced by 
the choice of origin, while homomorphisms o.~, 0"2 
defined by (10) depend on the choice of origin and 
should therefore be distinguished for its distinct 
choices. Hence we amend (10) to 

o.~{glt}p = {glt,}e 
(10a) 

o . s , { g l t } s  = {g ]t,}s. 

Accordingly, we have to distinguish also the sub- 
periodic groups, obtained by mappings o.~, o.s~, by 
indices P and S. We get 

~p  = o.p,(~) = {G, T°,, P, uo,(g)}, 
(14a) 

~P = o.p2(~)= {O, T°2,  P, uo2(g)}. 

Taking into account that the shift function satisfies 
o.~(~o(g, x)) = ~o(g, o'~(.r)) = ~o(g, "ri) we get 

~ s  = o. s , (  ~g) = { O, 

={O,  

~ s  = o.s2(~d) = { G, 

={O,  

T~, ,  S, u o , ( g ) -  ~o(g, 'r,)} 

T ° "  P+'r2'u°'(g)}' (14b) 

T°2,  S, u o 2 ( g ) -  q~(g, "r2)} 

T~2 , P + ' r , ,  uo2(g)}. 

In view of (13b), we can also write the latter groups 
as ~ s  = ~P(%),  ~ s  = ~p(-r,) and interpret them as 
the groups ~p,  ~p,  shifted in space by vectors "r2 = 
0"2('r), "r~=oh(-r), respectively. The groups ~p,  ~ p  
leave invariant hyperplanes (P, V,(k, R)) and 
(P, V2(h, R)), while ~s ,  ~ s  leave invariant hyper- 
planes (S, V,( k, R ) ), ( S, V2( h, R)), respectively. 

Notice now an important point. The shift of the 
group ~d in space by "r leads to the shift of factor 
groups by projections of-r  onto V,(k, R), V2(h, R) 
which are  the vectors Xl = o-,(a-), % =  %(a') and the 
shift by "r~ applies to the group ~p,  while the shift 
by a'2 applies to ~p,  so that: 

~ . , ( ~ ( ~ ) )  = Le.(o.,(.)) = m,(.,), 
(15) 

This should be distinguished from the shifts caused 
by the change of the origin. The shift of origin P by 
'r does not change the subperiodic group ~ p  if it lies 
in the subspace V~(k, R), and it does not change the 
subperiodic group ~ ,  if it lies in the subspace 
V2(h, R). Such shifts change the systems of nonprimi- 
tive translations in the group ~d as well as in the 
groups Z#p or ~p. The shift by "r, • V,(k, R) does not 
change the group ~v  but applies to the group ~p,  
while the shift "r2 • 11'2(h, R) does not change the group 
~/~p but applies to the group ~p. 

Further, the shifts a-~, % depend on both homo- 
morphisms oh, o2. The hyperplane (P, V~(k, R)) itself 
may be considered as the hyperplane onto which we 
'project' the group ~ in the factorization procedure, 
while the orientation V2(h, R) of the second set of 
hyperplanes determines the direction of the projec- 
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tion and vice versa. The homomorphisms 0.,, 0"2 them- 
selves are determined by the pair of complementary 
subspaces V~(k, R), V2(h, R), which must be G 
invariant. Now, the specification of any one of these 
subspaces already determines the reduction class. If 
this reduction class is orthogonal, then either one of 
the subspaces already determines the second one and 
hence also both homomorphisms 0"1,0"2 uniquely. If 
the reduction class is inclined, then the choice of one 
of the subspaces, say of the V~(k, R), determines only 
an orientation of hyperplanes onto which we project 
and there is still a certain freedom in the choice of 
the direction of the projection, which is correlated 
with the choice of the complementary subspace 
V2(h, R) and hence of the second set of hyperplanes 
onto which we project the group ~. 

7. The general subperiodic groups 

We have proved the factorization theorem for crys- 
tallographic space groups with the use of homo- 
morphisms which correspond to crystallographic 
directions. The theorem actually holds for a wider 
class of groups of Euclidean motions and there is 
also generally no necessity to restrict the reductions 
to Q reductions. As we have pointed out at the begin- 
ning of § 5, the symbol {(3, T~, P, u~(g)} can be used 
for any subgroup ~3 of ~'(n). We shall further say 
that ~3 is a space group (perhaps noncrystallographic) 
if its translation subgroup T~ (which is now not 
necessarily discrete) spans the whole V(n, R), other- 
wise we say that ~3 is subperiodic. In other words, 
the group is subperiodic if its translation subgroup 
spans a proper (or trivial) subspace of V(n, R). With 
the exception of site-point groups which correspond 
to the case of trivial subspace, the point groups of 
subperiodic groups are necessarily reducible, because 
the linear envelope of T6 is a proper subspace 
V,(k, R) of V(n, R). 

Each subspace V,(k, R) defines a set of parallel 
hyperplanes (P +'r2, V~(k, R)), where "r2 runs through 
coset representatives in coset resolution of V(n, R) 
with respect to its subgroup V~(k, R). We can choose 
these representatives in such a way that they will form 
a complementary subspace V2(h, R) to V~(k, R) in 
V(n, R). At this point we have again to distinguish 
cases when V2(h, R) is chosen either as an orthogonal 
or as an inclined complement. The choice of an 
orthogonal complement provides a particularly clear 
picture which enabled us to formulate the main results 
of reducibility theory for space groups in a compact 
manner (Kopsk2~, 1986, 1988a). Let us first elaborate 
this case. 

Orthogonal reductions 
If we choose the complement V2(h, R) as an 

orthogonal one, then we have a second set of hyper- 
planes (P+' r~,  V2(h, R)), orthogonal to the first one. 

The greatest point group which leaves the subspace 
V~(k,R) invariant is the direct product ~12 = 
G~(k) x ~2(h) of orthogonal groups on V~(k, R) and 
on its orthogonal complement V2(h, R). This is at the 
same time also the greatest subgroup of ~'(n), which 
leaves the orthogonal complement V2(h, R) invariant. 
To this group there corresponds a subgroup (space 
group) 

~g,2 = ~ ( k )  x ~g2(h) 

={~l (k)  x02(h) , V(n,R),P,u=O} (16a) 

of ~(n),  which is a direct product of groups 

~l(k)={~(k)x{e2}, V~(k,R),P,u=O}, 
(16b) 

~2(k)= {{e~} x ~2(h), V:(h, R), P, u=O}. 

Indeed, each element of ~ ( k ) x  ~2(h) can be 
uniquely expressed as a pair (g~, g2), where g~e 
ff~(k), g2e ~2(h) and 

{g t}p ={(gl ,  g2) t}p ={gl tl}p{g2 t2}p 

= {g2 t2}p{glJtl}p 

because g~ acts trivially on t2 e V2(h, R), g2 on t~ e 
V~(k, R). Elements {g~ t~}p of ~ ( k )  act in a concer- 
ted manner on hyperplanes (P + "r2, V~ (k, R)), mov- 
ing the points (P+'r2)+x~ to points (P+x2)+g~x~+ 
t~. Further, they act on the set of hyperplanes ( P +  
• ,, V2(h, R)) as on the points of the k-dimensional 
Euclidean space with points P + ' r , ,  -r~e V~(k, R). 
Indeed, it is {g,]tl}p(P+'r,, V2(h,R))= 
( P + g , ' r ~ + t , ,  V2(h, R)) and the point ( P + ' r , ) + x 2  of 
the hyperplane ( P + ' r l ,  V2(h, R)) is sent to the point 
(P+g~ ' r l+t~)+x2 of the hyperplane (P+gl~l+ 
t~, V2(h, R)). The reader will doubtlessly see himself 
the action of elements {g2[t2}p in analogy with this 
consideration. 

The group ~12 = g~(k)x ~2(h) is the greatest sub- 
group of ~(n) which transforms both sets of hyper- 
planes only among themselves. This group contains 
all space groups, the point groups of which admit the 
reduction V(n, R)= V~(k, R)@ V2(h, R). It contains 
'subspaces Vl(k, R), V2(h, R) as normal subgroups 
and it is easy to see that the factorization theorem 
applies to it. The homomorphisms Crp,, trp2, defined 
by (10a), send it to groups 

O ' p l ( ~ 1 2 )  = ~l(k)x Gp2(h)=~q~(P, V~(k, g)) 

= { ~ ( k ) x  ff~(h), V,(k,R),P,u=O}, 
(17a) 

~rp2(~,2)=~p,(k)x ~2(h) = ~ (P ,  VE(h, R)) 

= {(7~(k)x ~2(h), V2(h,g),P,u=O}. 

Let us again analyse at least the first of these groups. 
Its elements are commuting products of {gl[t~}p6 
~ ( k )  and of {g2[0}p 6 ~p2(h). We have seen above 
the action of the first of these elements on the hyper- 
planes. The second element leaves the hyperplane 
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(P, V, (k, R)) pointwise invariant and sends the hyper- 
planes (P+ ' r2 ,  Vl(k, R)) to (P+g2%,  Vi(k, R)) in 
such a way that it sends the point ( P + ' r 2 ) + x  , t o  the 
point ( P + g 2 % ) + x , .  The group ~,(k) x ~p2(h) is the 
greatest subgroup of ~(n),  which leaves the hyper- 
plane (P, V,(k, R)) invariant. 

Definition 5" The set of all elements of ~(n) which 
leave a hyperplane (P, V,(k, R)) invariant is called 
the general subperiodic group of this hyperplane. Two 
general subperiodic groups are called complementary 
if the orientations of their hyperplanes are orthogonal 
complements. 

The groups 5~(P, V,(k, R)) and ~(P ,  V2(h, R)) in 
(17a) are the complementary general subperiodic 
groups which realize factor groups of ~,2 over 
V2(h, R), V,(k, R), respectively. Accordingly, 
ker O'pl = V2(h, R), ker O ' p 2  = V,(k, R). 

The homomorphisms O'p,, o'p2 can now be applied 
to any subgroup q3={G, To, P, uo(g)} of ~2  and 
here ~ needs to be neither crystallographic nor space 
group. As a result of homomorphic mappings, we get 
the groups 

tr p,( ~) = { G, o-,( To), P, o',uo(g)} 

= { G, T ° , ,  P, uol(G)}, 
(18) 

0"p2(~3) = {O, 0"2(To), P, o.2uo(g)} 

= { G, T°2, P, uo2(G)}, 

which will be isomorphic to factor groups ~/To2,  
~/To,,  respectively, where: 

To, = ker O'p2(~) = ker 02(To) 

= ~ V,(k, R), 
(19) 

To2 = ker o 'p,(~) = ker oh(To) 

= ~c~ V2(h, R). 

This gives a slightly different (and more general) 
picture from the factorization theorem as we have 
formulated it here. The reduction V(n, R ) =  
V~(k, R)GVz(h, R) is orthogonal but it does not 
necessarily imply Q reduction; actually, the action 
of G on V(n, R) is not necessarily a Q representation 
(To is not necessarily a discrete translation group). 
If ~ is a crystallographic space group and the reduc- 
tion is of orthogonal class for its point group G, then 
the present result coincides with that of our factoriz- 
ation theorem. The same holds in cases of inclined- 
reduction classes if the R reduction above is acciden- 
tally also a Q reduction. Otherwise either one or both 
of the homomorphisms 0-,, o'2 result in groups 
T ° , ,  T~2 which are not discrete; accordingly the 
groups To,, To2 do not necessarily span the sub- 
spaces V,(k, R), V2(h, R). These situations may be 
of interest in the theory of quasicrystals and it would 
be desirable to perform an analysis of their relation- 
ship to the recently introduced concept of quasicrys- 

talline space groups (Rokhsar, Wright & Mermin, 
1988a, b). We shall stay for the moment with crys- 
tallographic space groups. 

Inclined reductions 
If the point group G admits an inclined reduction 

V(n, R)= V,(k, R)• V2(h, R), which implies a O 
reduction, then not only the spaces V,(k, R), 
V2(h, R), but also their orthogonal complements 
V2(h,R), V,(k, R) are G invariant. Accordingly, 

- 

the point group G is a subgroup of direct 
products of orthogonal groups 6,2 = ~ , (k )x~2(h) ,  
~2 ,=G,(k)xG2(h)  and space groups with point 
group G are subgroups of^space groups ~,2= 
{e,2, V ( n , R ) , P , u = 0 } ,  $2,={G2,, V(n,R),P,u=O}. 
Hence the point group O is a subgroup of an inter- 
section ¢,2=G,2c~02, and all Euclidean motion 
groups with this point group are subgroups of the 
intersection 

~,2 = ~,2~ ~2, 

= {C,2, V(n, R), P, u=O}. (20) 

The subspaces V,(k, R), V2(h, R) considered as 
translation groups are already normal subgroups of 
this group because they are simultaneously if,2 
invariant. Notice that while V,(k, R) is normal in ~',2, 
V2(h, R) in ~2,, the group ~,2 is the greatest subgroup 
of ~'(n) in which both of these subspaces are normal 
subgroups. The projections o3, o-2 and the choice of 
origin again define homomorphisms Op,, O'p2 by 
(10a) and these homomorphisms send the group ~',2 
onto subgroups 

O'p,(~,2) = ~(P ,  V,(k,R); V2(h,R)) 

= {¢12, V,(k,R),P,u=O}, 
(21) 

o'p2(~,2) = ~ (P ,  V2(h,R); V,(k,R)) 

= {~,2, V2(k, R), P, u=0} 

of general subperiodic groups .~(P,V,(k,R)), 
~(P ,  V2(h, R)). 

Notice that the latter two general subperiodic 
groups are not complementary in the sense of 
definition 4 (as it is reflected in definition 5) because 
they correspond to different point groups ~,2, ~2,; 
n O W  

37(P, V,(k,R))={~,2, V,(k,R),P,u=O}, 
(22) 

~(P, V2(k,n))={~2,, V2(k,R),P,u=O}. 

The greatest complementary subperiodic groups 
which correspond to the inclined reduction are now 
the groups (21). 

The groups ~,2, ~,2 play here the same r61e as the 
groups denoted before by the same symbols for 
orthogonal reductions. The group ~',2 is the greatest 
subgroup of O(n) which leaves both subspaces 
V,(k, R), V2(h, R) invariant and ~,2 is the greatest 
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subgroup of ~(n) which transforms the sets of hyper- 
planes (P+ ' r2 ,  VI(k,R)), ( P + ' r l ,  V2(h,R)) among 
themselves. Orthogonal reductions are particular 
casesA of inclined ones and,, they occur when,, V 1 (k,  R) = 
V, (k, R), V2(h, R) = V2(h, R), 012 = ~,2 = e21, ~,e = 
~12 = ~2,. 

Summary 

The origin of the ambiguity in factor groups ~p, 
~p  is now quite transparent; according to the choice 
of origin P we map the groups ~ into various general 
subperiodic groups which differ only by a shift in 
space and which correspond to various hyperplanes 
of the same orientation but of different location in 
the space. This location is determined by the point P 
through which the corresponding hyperplanes pass. 

We have also established the following: If a sub- 
space V~(k, R) of V(n, R) is G invariant, then there 
exist homomorphisms, which map the groups of 
geometric class G into the general subperiodic groups 
~ ( P + x 2 ,  V~(k, R)). If the reduction class of G deter- 
mined by Vl(k, R) is orthogonal, then there is only 
one such homomorphism for each of these general 
subperiodic groups. Otherwise there is also a certain 
further freedom in the choice of the 'direction' of 
these homomorphisms, related to the choice of the 
direction of the complementary space. In the case of 
crystallographic groups we must set further restric- 
tions on the choice of subspaces if we want to get 
crystallographic subperiodic groups as the projec- 
tions. This is, for example, the reason for which we 
cannot guarantee that an orthogonal projection of a 
crystallographic space group will be a crystallo- 
graphic subperiodic group if the corresponding 
reduction belongs to an inclined class. 

8. The contracted subperiodic groups 

The remedy for the ambiguity in 'location' of resulting 
subperiodic groups is provided by introduction of 
groups for which we suggest the name 'contracted 
subperiodic groups'. The basic idea and the difference 
between ordinary and contracted subperiodic groups 
can best be illustrated by consideration of the point 
groups and their relationship to site-point groups. 
With each point P of E (n) there is associated a group 
~p(n) ={G(n),  T=(O), P,u=0} ,  the group of all n- 
dimensional rotations which leave the point P 
invariant. The homomorphism 0": ~ ( n ) ~  ~(n) intro- 
duced at the beginning of § 5 sends each subgroup 
~ = { G ,  T~, P,u(g)} of g'(n) onto its point group 
G = t r ( ~ ) ,  the subgroup of ~7(n) which acts on 
V(n, R). We can associate with each point P a 
homomorphism 0"p:~(n)--)~p(n) by 0"p{glt}p-- 
{g ]0}e. Such homomorphisms will send the group 
to site-point groups Gp = {G, (0), P, u = 0}, which, as 
groups acting on E(n), differ from G by their location 
in E(n). These site-point groups can be considered 

as factor groups of the group (g over its translation 
subgroup Tc as well as the group G. It is, however, 
a better practice to consider the point group (3, which 
is deprived of any location in E (n), as the representa- 
tive of the factor group; the group G is at the same 
time an operator group on V(n, R) and hence on T~. 

The contracted subperiodic groups play an 
analogous role with respect to partial translation sub- 
groups as the point groups with respect to the full 
translation subgroups. We shall introduce them quite 
formally as groups acting on Cartesian products of 
Euclidean and orthogonal vector spaces. Let us 
first consider a Cartesian product E , ( k ) x  V2(h, R) 
of k-dimensional Euclidean space El(k) and h- 
dimensional real orthogonal vector space V2(h, R). 
The elements of this product are pairs (P1 + xl, x2) of 
a point Pl+x~ of E~(k) and of a vector x : e  V2(h, R), 
where ,°1 is an arbitrary but fixed point of E~(k) and 
Vl(k, R) its difference space. Further we introduce a 
direct product ~ ( k ) x  ~2(h) of a Euclidean group 
acting on E~(k) and an orthogonal group acting on 
V2(h, R). We shall write elements of this group in the 
form [(gl,  g2)lt~]P, and their action on elements of 
the Cartesian product will be defined by 

[(gl, g2)I tl]p, ( P~ + xl, x2) -- (Pi + glx~ + tl, gEx2). 

(23a) 

Though both the Cartesian product and the group 
acting on it may be introduced independently of any 
space E(n), it is of advantage for our purposes to 
identify the spaces V~(k, R), V2(h , R)with orthogonal 
complements in the difference .space V(n, R) of E(n). 
We shall further introduce a Cartesian product 
Vl(k, R ) x  E2(h), the elements of which are pairs 
(xl, P2+x2) of a vector Xl from Vl(k, R) and of a 
point P2+x2 from Ee(h), where P2 is an arbitrary but 
fixed point of EE(h) and XEe V2(h,R). Again we 
introduce the direct product ~ ( k ) x  ~2(h) of an 
orthogonal group on V~(k, R) with Euclidean group 
on E2(h ). To distinguish the elements of this group 
formally from the previous one, we shall write them 
in the form ((gi, g2)It2>P2 and define their action on 
the Cartesian product by 

((g,, g2)I tE)p2(Xl, P2 + x2) = (glXl, P2 + g2x2 + t2). 
(23b) 

Now we can introduce homomorphisms 0"1,0"2 as 

0"1{glt}p=[g oq(t)]p, = [g Itl]p,, 
(10b) 

0.2{g t}p=(glor2(t))P2=(glt2>P2, 
which map the group ~'~2 onto the direct products 

0.,(~,2) = ~,(k)x~2(h)=,,~(V,(k,R)) 

= [~ , (k )x  ~2(h), VI(k,R),P,,u,=O], 

0"2(~12) = G,(k) x ~2(h) = ~ (  V2(h, R)) 

--(~'l(k) x (72(h), VE(h,R),PE,u2=O). 

(17b) 
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We suggest the names "general contracted sub- 
periodic groups' with translation spaces I/1(k, R), 
V2(h, R) for the last two groups and "contracted sub- 
periodic groups" for their subgroups. We shall now 
briefly outline the use of contracted subperiodic 
groups in the factorization procedure. 

We have now a unique general contracted subperi- 
odic group ..~'( Vt(k, R)) for each subspace V~(k, R). 
The orthogonal group t3(n) can be considered on 
the same basis as the contracted subperiodic group 
corresponding to trivial subspace (0). We shall 
again say that the groups ~ (  V~(k, R)), ~(  V2(h , R)) 
are complementary if the subspaces Vl(k, R), 
V2( h, R) are orthogonal complements in V( n, R ). 
To include inclined reductions into the scheme, 
we have to consider also the Cartesian products 
E~(k) x V2(h, R) and their partners Vl(k, R) x E2(h) 
for which the subspaces V~(k, R), V2(h, R), playing 
the r61es of difference spaces or of components in 
products, are not orthogonal. Such products are 
then subject to action of those subgroups 
~(V~(k,R); V2(h,g)), ~(V2(h,R); V~(k,R)) of 
the general contracted subperiodic groups (17b) 
which correspond to the point group 6~12 = (712n t~2~ 
[cf (21), (22)]. In these cases the latter contracted sub- 
periodic groups are again not general but they are 
complementary and we can introduce homo- 
morphisms o'~, o'2 by the same relations (10b) as 
for the orthogonal case. The domain for the action 
of these homomorphisms will again be the group 
~ 2  = ~ 2  c~ ~21. 

Hence the contracted groups into which we project 
the reducible subgro~aps of ~(n) are now defined 
uniquely. The homomorphisms 0.~, 0.2, defined by 
(10b), are still not unique; they depend on pairs of 
points P, PI and P, P2. This dependence has, however, 
a clear geometrical meaning. With original homo- 
morphisms 0.1,0"2, we can associate projections of 
E(n) onto hyperplanes (P+' r2 ,  Vl(k, R)), ( P + ' r l ,  
V2(h, R)) or projections onto single spaces E~(k), 
E2(h) which represent the whole set of hyperplanes. 
The projections onto hyperplanes do not need any 
further specification of origin because these hyper- 
planes are part of the space E(n). On the other hand, 
to make the projections onto El(k), E2(h) unique, 
we have to choose a point P in E(n) and specify its 
projections P~ onto El(k) and P2 onto E2(h). The 
homomorphisms 0.~, 0.2 become unique if this 
relationship is fixed and they do not further change 
if we assign to the shift of origin P on "r to P +'r the 
corresponding shifts of origins Pt, P2 on projections 
"rl =oh('r), "r2=tr2(-r). Assuming that we keep the 
points P, P~, P2 fixed, we can also drop the subscripts 
at Seitz symbols. 

Let us finally see the effect of homomor- 
phisms o'l, 0"2 on ordinary subperiodic groups. All 
groups ~('r2), ~( ' r l )  with "r2~ V2(h, R), "r~ ~ V~(k, R) 
are sent to a pair of single contracted groups 

according to 

0.1" ~('t2)={G, T°l ,  P+'r2, ual(g)}--> ~ 

=[G, T°, ,  P,, uc,(g)] ,  
(24) 

0"2: ,.~('r,)={O, T°2, P +.t,, uc2(g)} ~ ~l 

=(G, T°2, P2, uc2(g)). 

This relationship holds for orthogonal as well as 
for inclined reductions. Notice that the groups ~('r2) 
which are mapped by these homomorphisms onto the 
group ~ differ for different choices of the space 
V2(h, R), which are possible if Vi(k, R) defines an 
inclined reduction class under the action of G, and 
the same holds for the second set of groups. This can 
be expressed in the following way: The shift of the 
group ~ ( 0 ) = { G ,  T~l,  P, ua~(g)} along V2(h,R) 
as well as the shift of the group ~ ( 0 ) =  
{G, T°c2, P, uc2(g)} along V~(k, R) does not change 
its image under homomorphisms 0"!, 0"2 which are 
determined by the reduction V(n, R)= V~(k, R)• 
V2(h, R). 

Finally, if erl(q3 ) =~o, o '2 (~) - -~ ,  then o'l(qg(,r))= 
~('rl) ,  tr2(~3('r)) -- ~ ('r2), where "rl = o'l (a'), a'2 = o'2('r); 
compare this with (15). In other words, the shift of 
the group ~ on 'r leads to the shift of its images on 
the projections of "r onto the subspaces Vz(k, R), 
V2( h, R ), respectively. 

Discussion 

We have seen that factorization of reducible space 
groups by their partial translation subgroups leads 
to groups which have the structure of subperiodic 
groups. There are generally many possibilities of how 
to represent such groups and many ways of choosing 
the corresponding homomorphisms. We investigated 
only those homomorphisms which can be suitably 
geometrically interpreted. Our considerations have 
been concentrated from the beginning on applications 
to crystallographic space groups. As we have seen, 
the factorization theorem has more general validity; 
there is a way open for its generalization to noncrys- 
tallographic cases or to cases when crystallographic 
groups can be factorized to noncrystallographic ones. 
The original homomorphisms oh, o2 are just ordinary 
projections of vector space onto spaces of lower 
dimensions; the homomorphisms written in boldface 
can be interpreted as projections of groups. We 
believe that this point is of interest in connection with 
the theory of quasicrystalline structures. 

The idea to distinguish the ordinary and contracted 
subperiodic groups is not quite new, although we 
have given it a rather general character here. The 
'sectional groups' and groups of a 'two sided plane' 
used by Holser (1958) correspond to layer groups of 
three-dimensional space and to contracted layer 
groups, respectively. The idea is also close to so-called 
'spin groups' (Litvin & Opechowski, 1974), if that 
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were to be extended from point to space groups, and 
the contracted groups have some common features 
with the 'P-symmetry  groups' of Zamorzaev (1967). 
Let us also mention the classification work of Bohm 
& Dornberger-Schiff (1967) in which the augmented 
matrices represent either the contracted groups or 
ordinary subperiodic groups with respect to an origin 
which lies in the hyperplane they leave invariant [the 
matrices given in that work are not general enough 
to express subperiodic groups with respect to any 
chosen origin in E(n)] .  

The site-point groups of the Euclidean space may 
be also considered as the simplest kind of subperiodic 
group - groups with trivial translation subgroup. It 
is well known that space groups may be considered 
as extensions of translation subgroups by point 
groups (Ascher & Janner, 1965; 1968/69). 
Analogously, reducible space groups may be con- 
sidered as extensions of their partial translation sub- 
groups by the corresponding factor groups - the sub- 
periodic groups. It is again an advantage to use the 
contracted subperiodic groups in such an approach. 
There are far-reaching analogies in the consideration 
of space groups as extensions by subperiodic groups 
with the ordinary consideration of these groups as 
extensions by point groups. 

The first immediate consequence of the factoriz- 
ation theorem is, however, the fact that we can classify 
reducible space groups into subperiodic classes. This 
will be the subject of our subsequent paper. 
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Abstract 

Classification of reducible space groups into pairs of 
complementary subperiodic classes with respect to 
various reductions is introduced and analysed. This 
classification is finer than the classification into 
geometric classes and it intersects with the 
classification into arithmetic classes. It is proved that 
an intersection theorem holds for those classes which 
correspond to Z decomposition of the translation 
subgroups of the reducible space groups and then 
symmorphic representatives of subperiodic classes of 
reducible space groups are introduced in analogy with 
the ordinary concept of symmorphic space groups. 
In particular, it is shown that the symmorphic space 
group is a symmorphic representative of subperiodic 
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classes, defined by complementary symmorphic sub- 
periodic groups. In cases of Z reductions it is shown 
that the pair of complementary subperiodic classes 
may define none, one or several space groups; if one 
such group belongs to these classes, then also a set 
of groups which differ by shifts in space does. These 
shifts are determined with translation normalizers. 
Further ramifications and possible use of the theory 
are discussed. 

I. Introduction 

As we have shown in a previous paper (Kopsk2~, 
1989), reducible space groups can be factorized by 
their partial translation subgroups and the resulting 
groups can be interpreted as subperiodic groups. Vice 
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